Как рассчитать абсолютную и относительную погрешности
Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.
Выражения 13 и 14 позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей абсолютную или относительную , а другую рассчитать, используя простую связь между ними:. На практике чаще пользуются формулой 13 , так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.
При достаточно большом числе измерений случайные ошибки возникают с равной вероятностью как в сторону увеличения, так и в сторону уменьшения измеряемой величины, то есть можно считать, что истинное значение измеряемой величины заключено в интервале. Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для а ср оставляют все верные цифры и одну сомнительную.
Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.
То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.
Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:.
Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.
Погрешностью или абсолютной ошибкой отдельного измерения называют разность между значением, полученным в данном измерении, и среднеарифметическим значением измеряемой величины:. Средней абсолютной ошибкой называется среднеарифметическое модулей абсолютных ошибок отдельных измерений:.
Как сделать сотрудника вовлеченным? Лень и как с ней бороться. Психологические аспекты Способов заработать с помощью internet Лекции по Основам предпринимательства.
К расчету ошибки метода измерения прямого или косвенного приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени. Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода приборную погрешность.
При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:. Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при расчете приращений функции f x 1 ,x 2 ,…,х n по формулам 11 и 12 частные приращения должны складываться по абсолютной величине.
В основе вычисления погрешности косвенных измерений лежат два условия предположения:. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки в теории можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.
Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины.
Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:. Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D 1 и внешним диаметром D 2.
Погрешность метода или приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения. Класс точности прибора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению.
Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами. Результаты измерений — приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда.
Класс точности указывается на шкале прибора цифрой, обведенной кружочком. Согласно ГОСТу все электроизмерительные приборы разделяются на 8 классов: При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы. При работе с простыми приборами линейка, мензурка и т. Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление. Приборную погрешность косвенных измерений можно рассчитать, используя правила приближенных вычислений.
В окончательном результате указывают большую из них. Ошибка результата определяется не только неточностями измерений но и неточностями вычислений.
Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1, — что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 — только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.
Такой интервал указывают в виде абсолютной ошибки измерения. Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами.
Средней относительной погрешностью или просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:.
19.09.2017 в 16:20:10 Самым худшим альбомом года кнопки, но и проводить простые.
19.09.2017 в 12:16:43 Обеспечения, позволяющего превратить компьютер в полноценный сервер или рабочую.